//! User input. use std::io::{self, Read, Write}; use std::ops; use event::{self, Event, Key}; use raw::IntoRawMode; /// An iterator over input keys. pub struct Keys { iter: Events, } impl Iterator for Keys { type Item = Result; fn next(&mut self) -> Option> { loop { match self.iter.next() { Some(Ok(Event::Key(k))) => return Some(Ok(k)), Some(Ok(_)) => continue, Some(Err(e)) => return Some(Err(e)), None => return None, }; } } } /// An iterator over input events. pub struct Events { inner: EventsAndRaw } impl Iterator for Events { type Item = Result; fn next(&mut self) -> Option> { self.inner.next().map(|tuple| tuple.map(|(event, _raw)| event)) } } /// An iterator over input events and the bytes that define them. pub struct EventsAndRaw { source: R, leftover: Option, } impl Iterator for EventsAndRaw { type Item = Result<(Event, Vec), io::Error>; fn next(&mut self) -> Option), io::Error>> { let source = &mut self.source; if let Some(c) = self.leftover { // we have a leftover byte, use it self.leftover = None; return Some(parse_event(c, &mut source.bytes())); } // Here we read two bytes at a time. We need to distinguish between single ESC key presses, // and escape sequences (which start with ESC or a x1B byte). The idea is that if this is // an escape sequence, we will read multiple bytes (the first byte being ESC) but if this // is a single ESC keypress, we will only read a single byte. let mut buf = [0u8; 2]; let res = match source.read(&mut buf) { Ok(0) => return None, Ok(1) => { match buf[0] { b'\x1B' => Ok((Event::Key(Key::Esc), vec![b'\x1B'])), c => parse_event(c, &mut source.bytes()), } } Ok(2) => { let option_iter = &mut Some(buf[1]).into_iter(); let result = { let mut iter = option_iter.map(|c| Ok(c)).chain(source.bytes()); parse_event(buf[0], &mut iter) }; // If the option_iter wasn't consumed, keep the byte for later. self.leftover = option_iter.next(); result } Ok(_) => unreachable!(), Err(e) => Err(e), }; Some(res) } } fn parse_event(item: u8, iter: &mut I) -> Result<(Event, Vec), io::Error> where I: Iterator> { let mut buf = vec![item]; let result = { let mut iter = iter.inspect(|byte| if let &Ok(byte) = byte { buf.push(byte); }); event::parse_event(item, &mut iter) }; result.or(Ok(Event::Unsupported(buf.clone()))).map(|e| (e, buf)) } /// Extension to `Read` trait. pub trait TermRead { /// An iterator over input events. fn events(self) -> Events where Self: Sized; /// An iterator over key inputs. fn keys(self) -> Keys where Self: Sized; /// Read a line. /// /// EOT and ETX will abort the prompt, returning `None`. Newline or carriage return will /// complete the input. fn read_line(&mut self) -> io::Result>; /// Read a password. /// /// EOT and ETX will abort the prompt, returning `None`. Newline or carriage return will /// complete the input. fn read_passwd(&mut self, writer: &mut W) -> io::Result> { let _raw = writer.into_raw_mode()?; self.read_line() } } impl TermRead for R { fn events(self) -> Events { Events { inner: self.events_and_raw() } } fn keys(self) -> Keys { Keys { iter: self.events() } } fn read_line(&mut self) -> io::Result> { let mut buf = Vec::with_capacity(30); for c in self.bytes() { match c { Err(e) => return Err(e), Ok(0) | Ok(3) | Ok(4) => return Ok(None), Ok(0x7f) => { buf.pop(); } Ok(b'\n') | Ok(b'\r') => break, Ok(c) => buf.push(c), } } let string = String::from_utf8(buf) .map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))?; Ok(Some(string)) } } /// Extension to `TermRead` trait. A separate trait in order to maintain backwards compatibility. pub trait TermReadEventsAndRaw { /// An iterator over input events and the bytes that define them. fn events_and_raw(self) -> EventsAndRaw where Self: Sized; } impl TermReadEventsAndRaw for R { fn events_and_raw(self) -> EventsAndRaw { EventsAndRaw { source: self, leftover: None, } } } /// A sequence of escape codes to enable terminal mouse support. const ENTER_MOUSE_SEQUENCE: &'static str = csi!("?1000h\x1b[?1002h\x1b[?1015h\x1b[?1006h"); /// A sequence of escape codes to disable terminal mouse support. const EXIT_MOUSE_SEQUENCE: &'static str = csi!("?1006l\x1b[?1015l\x1b[?1002l\x1b[?1000l"); /// A terminal with added mouse support. /// /// This can be obtained through the `From` implementations. pub struct MouseTerminal { term: W, } impl From for MouseTerminal { fn from(mut from: W) -> MouseTerminal { from.write_all(ENTER_MOUSE_SEQUENCE.as_bytes()).unwrap(); MouseTerminal { term: from } } } impl Drop for MouseTerminal { fn drop(&mut self) { self.term.write_all(EXIT_MOUSE_SEQUENCE.as_bytes()).unwrap(); } } impl ops::Deref for MouseTerminal { type Target = W; fn deref(&self) -> &W { &self.term } } impl ops::DerefMut for MouseTerminal { fn deref_mut(&mut self) -> &mut W { &mut self.term } } impl Write for MouseTerminal { fn write(&mut self, buf: &[u8]) -> io::Result { self.term.write(buf) } fn flush(&mut self) -> io::Result<()> { self.term.flush() } } #[cfg(unix)] mod unix_impl { use super::*; use std::os::unix::io::{AsRawFd, RawFd}; impl AsRawFd for MouseTerminal { fn as_raw_fd(&self) -> RawFd { self.term.as_raw_fd() } } } #[cfg(test)] mod test { use super::*; use std::io; use event::{Key, Event, MouseEvent, MouseButton}; #[test] fn test_keys() { let mut i = b"\x1Bayo\x7F\x1B[D".keys(); assert_eq!(i.next().unwrap().unwrap(), Key::Alt('a')); assert_eq!(i.next().unwrap().unwrap(), Key::Char('y')); assert_eq!(i.next().unwrap().unwrap(), Key::Char('o')); assert_eq!(i.next().unwrap().unwrap(), Key::Backspace); assert_eq!(i.next().unwrap().unwrap(), Key::Left); assert!(i.next().is_none()); } #[test] fn test_events() { let mut i = b"\x1B[\x00bc\x7F\x1B[D\ \x1B[M\x00\x22\x24\x1B[<0;2;4;M\x1B[32;2;4M\x1B[<0;2;4;m\x1B[35;2;4Mb" .events(); assert_eq!(i.next().unwrap().unwrap(), Event::Unsupported(vec![0x1B, b'[', 0x00])); assert_eq!(i.next().unwrap().unwrap(), Event::Key(Key::Char('b'))); assert_eq!(i.next().unwrap().unwrap(), Event::Key(Key::Char('c'))); assert_eq!(i.next().unwrap().unwrap(), Event::Key(Key::Backspace)); assert_eq!(i.next().unwrap().unwrap(), Event::Key(Key::Left)); assert_eq!(i.next().unwrap().unwrap(), Event::Mouse(MouseEvent::Press(MouseButton::WheelUp, 2, 4))); assert_eq!(i.next().unwrap().unwrap(), Event::Mouse(MouseEvent::Press(MouseButton::Left, 2, 4))); assert_eq!(i.next().unwrap().unwrap(), Event::Mouse(MouseEvent::Press(MouseButton::Left, 2, 4))); assert_eq!(i.next().unwrap().unwrap(), Event::Mouse(MouseEvent::Release(2, 4))); assert_eq!(i.next().unwrap().unwrap(), Event::Mouse(MouseEvent::Release(2, 4))); assert_eq!(i.next().unwrap().unwrap(), Event::Key(Key::Char('b'))); assert!(i.next().is_none()); } #[test] fn test_events_and_raw() { let input = b"\x1B[\x00bc\x7F\x1B[D\ \x1B[M\x00\x22\x24\x1B[<0;2;4;M\x1B[32;2;4M\x1B[<0;2;4;m\x1B[35;2;4Mb"; let mut output = Vec::::new(); { let mut i = input.events_and_raw().map(|res| res.unwrap()) .inspect(|&(_, ref raw)| { output.extend(raw); }).map(|(event, _)| event); assert_eq!(i.next().unwrap(), Event::Unsupported(vec![0x1B, b'[', 0x00])); assert_eq!(i.next().unwrap(), Event::Key(Key::Char('b'))); assert_eq!(i.next().unwrap(), Event::Key(Key::Char('c'))); assert_eq!(i.next().unwrap(), Event::Key(Key::Backspace)); assert_eq!(i.next().unwrap(), Event::Key(Key::Left)); assert_eq!(i.next().unwrap(), Event::Mouse(MouseEvent::Press(MouseButton::WheelUp, 2, 4))); assert_eq!(i.next().unwrap(), Event::Mouse(MouseEvent::Press(MouseButton::Left, 2, 4))); assert_eq!(i.next().unwrap(), Event::Mouse(MouseEvent::Press(MouseButton::Left, 2, 4))); assert_eq!(i.next().unwrap(), Event::Mouse(MouseEvent::Release(2, 4))); assert_eq!(i.next().unwrap(), Event::Mouse(MouseEvent::Release(2, 4))); assert_eq!(i.next().unwrap(), Event::Key(Key::Char('b'))); assert!(i.next().is_none()); } assert_eq!(input.iter().map(|b| *b).collect::>(), output) } #[test] fn test_function_keys() { let mut st = b"\x1BOP\x1BOQ\x1BOR\x1BOS".keys(); for i in 1..5 { assert_eq!(st.next().unwrap().unwrap(), Key::F(i)); } let mut st = b"\x1B[11~\x1B[12~\x1B[13~\x1B[14~\x1B[15~\ \x1B[17~\x1B[18~\x1B[19~\x1B[20~\x1B[21~\x1B[23~\x1B[24~" .keys(); for i in 1..13 { assert_eq!(st.next().unwrap().unwrap(), Key::F(i)); } } #[test] fn test_special_keys() { let mut st = b"\x1B[2~\x1B[H\x1B[7~\x1B[5~\x1B[3~\x1B[F\x1B[8~\x1B[6~".keys(); assert_eq!(st.next().unwrap().unwrap(), Key::Insert); assert_eq!(st.next().unwrap().unwrap(), Key::Home); assert_eq!(st.next().unwrap().unwrap(), Key::Home); assert_eq!(st.next().unwrap().unwrap(), Key::PageUp); assert_eq!(st.next().unwrap().unwrap(), Key::Delete); assert_eq!(st.next().unwrap().unwrap(), Key::End); assert_eq!(st.next().unwrap().unwrap(), Key::End); assert_eq!(st.next().unwrap().unwrap(), Key::PageDown); assert!(st.next().is_none()); } #[test] fn test_esc_key() { let mut st = b"\x1B".keys(); assert_eq!(st.next().unwrap().unwrap(), Key::Esc); assert!(st.next().is_none()); } fn line_match(a: &str, b: Option<&str>) { let mut sink = io::sink(); let line = a.as_bytes().read_line().unwrap(); let pass = a.as_bytes().read_passwd(&mut sink).unwrap(); // godammit rustc assert_eq!(line, pass); if let Some(l) = line { assert_eq!(Some(l.as_str()), b); } else { assert!(b.is_none()); } } #[test] fn test_read() { let test1 = "this is the first test"; let test2 = "this is the second test"; line_match(test1, Some(test1)); line_match(test2, Some(test2)); } #[test] fn test_backspace() { line_match("this is the\x7f first\x7f\x7f test", Some("this is th fir test")); line_match("this is the seco\x7fnd test\x7f", Some("this is the secnd tes")); } #[test] fn test_end() { line_match("abc\nhttps://www.youtube.com/watch?v=dQw4w9WgXcQ", Some("abc")); line_match("hello\rhttps://www.youtube.com/watch?v=yPYZpwSpKmA", Some("hello")); } #[test] fn test_abort() { line_match("abc\x03https://www.youtube.com/watch?v=dQw4w9WgXcQ", None); line_match("hello\x04https://www.youtube.com/watch?v=yPYZpwSpKmA", None); } }