termion/src/input.rs

389 lines
12 KiB
Rust

//! User input.
use std::io::{self, Read, Write};
use std::ops;
use event::{self, Event, Key};
use raw::IntoRawMode;
/// An iterator over input keys.
pub struct Keys<R> {
iter: Events<R>,
}
impl<R: Read> Iterator for Keys<R> {
type Item = Result<Key, io::Error>;
fn next(&mut self) -> Option<Result<Key, io::Error>> {
loop {
match self.iter.next() {
Some(Ok(Event::Key(k))) => return Some(Ok(k)),
Some(Ok(_)) => continue,
e @ Some(Err(_)) => e,
None => return None,
};
}
}
}
/// An iterator over input events.
pub struct Events<R> {
inner: EventsAndRaw<R>
}
impl<R: Read> Iterator for Events<R> {
type Item = Result<Event, io::Error>;
fn next(&mut self) -> Option<Result<Event, io::Error>> {
self.inner.next().map(|tuple| tuple.map(|(event, _raw)| event))
}
}
/// An iterator over input events and the bytes that define them.
pub struct EventsAndRaw<R> {
source: R,
leftover: Option<u8>,
}
impl<R: Read> Iterator for EventsAndRaw<R> {
type Item = Result<(Event, Vec<u8>), io::Error>;
fn next(&mut self) -> Option<Result<(Event, Vec<u8>), io::Error>> {
let source = &mut self.source;
if let Some(c) = self.leftover {
// we have a leftover byte, use it
self.leftover = None;
return Some(parse_event(c, &mut source.bytes()));
}
// Here we read two bytes at a time. We need to distinguish between single ESC key presses,
// and escape sequences (which start with ESC or a x1B byte). The idea is that if this is
// an escape sequence, we will read multiple bytes (the first byte being ESC) but if this
// is a single ESC keypress, we will only read a single byte.
let mut buf = [0u8; 2];
let res = match source.read(&mut buf) {
Ok(0) => return None,
Ok(1) => {
match buf[0] {
b'\x1B' => Ok((Event::Key(Key::Esc), vec![b'\x1B'])),
c => parse_event(c, &mut source.bytes()),
}
}
Ok(2) => {
let mut option_iter = &mut Some(buf[1]).into_iter();
let result = {
let mut iter = option_iter.map(|c| Ok(c)).chain(source.bytes());
parse_event(buf[0], &mut iter)
};
// If the option_iter wasn't consumed, keep the byte for later.
self.leftover = option_iter.next();
result
}
Ok(_) => unreachable!(),
Err(e) => Err(e),
};
Some(res)
}
}
fn parse_event<I>(item: u8, iter: &mut I) -> Result<(Event, Vec<u8>), io::Error>
where I: Iterator<Item = Result<u8, io::Error>>
{
let mut buf = vec![item];
let result = {
let mut iter = iter.inspect(|byte| if let &Ok(byte) = byte {
buf.push(byte);
});
event::parse_event(item, &mut iter)
};
result.or(Ok(Event::Unsupported(buf.clone()))).map(|e| (e, buf))
}
/// Extension to `Read` trait.
pub trait TermRead {
/// An iterator over input events.
fn events(self) -> Events<Self> where Self: Sized;
/// An iterator over key inputs.
fn keys(self) -> Keys<Self> where Self: Sized;
/// Read a line.
///
/// EOT and ETX will abort the prompt, returning `None`. Newline or carriage return will
/// complete the input.
fn read_line(&mut self) -> io::Result<Option<String>>;
/// Read a password.
///
/// EOT and ETX will abort the prompt, returning `None`. Newline or carriage return will
/// complete the input.
fn read_passwd<W: Write>(&mut self, writer: &mut W) -> io::Result<Option<String>> {
let _raw = try!(writer.into_raw_mode());
self.read_line()
}
}
impl<R: Read + TermReadEventsAndRaw> TermRead for R {
fn events(self) -> Events<Self> {
Events {
inner: self.events_and_raw()
}
}
fn keys(self) -> Keys<Self> {
Keys { iter: self.events() }
}
fn read_line(&mut self) -> io::Result<Option<String>> {
let mut buf = Vec::with_capacity(30);
for c in self.bytes() {
match c {
Err(e) => return Err(e),
Ok(0) | Ok(3) | Ok(4) => return Ok(None),
Ok(0x7f) => {
buf.pop();
}
Ok(b'\n') | Ok(b'\r') => break,
Ok(c) => buf.push(c),
}
}
let string = try!(String::from_utf8(buf)
.map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e)));
Ok(Some(string))
}
}
/// Extension to `TermRead` trait. A separate trait in order to maintain backwards compatibility.
pub trait TermReadEventsAndRaw {
/// An iterator over input events and the bytes that define them.
fn events_and_raw(self) -> EventsAndRaw<Self> where Self: Sized;
}
impl<R: Read> TermReadEventsAndRaw for R {
fn events_and_raw(self) -> EventsAndRaw<Self> {
EventsAndRaw {
source: self,
leftover: None,
}
}
}
/// A sequence of escape codes to enable terminal mouse support.
const ENTER_MOUSE_SEQUENCE: &'static str = csi!("?1000h\x1b[?1002h\x1b[?1015h\x1b[?1006h");
/// A sequence of escape codes to disable terminal mouse support.
const EXIT_MOUSE_SEQUENCE: &'static str = csi!("?1006l\x1b[?1015l\x1b[?1002l\x1b[?1000l");
/// A terminal with added mouse support.
///
/// This can be obtained through the `From` implementations.
pub struct MouseTerminal<W: Write> {
term: W,
}
impl<W: Write> From<W> for MouseTerminal<W> {
fn from(mut from: W) -> MouseTerminal<W> {
from.write_all(ENTER_MOUSE_SEQUENCE.as_bytes()).unwrap();
MouseTerminal { term: from }
}
}
impl<W: Write> Drop for MouseTerminal<W> {
fn drop(&mut self) {
self.term.write_all(EXIT_MOUSE_SEQUENCE.as_bytes()).unwrap();
}
}
impl<W: Write> ops::Deref for MouseTerminal<W> {
type Target = W;
fn deref(&self) -> &W {
&self.term
}
}
impl<W: Write> ops::DerefMut for MouseTerminal<W> {
fn deref_mut(&mut self) -> &mut W {
&mut self.term
}
}
impl<W: Write> Write for MouseTerminal<W> {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.term.write(buf)
}
fn flush(&mut self) -> io::Result<()> {
self.term.flush()
}
}
#[cfg(test)]
mod test {
use super::*;
use std::io;
use event::{Key, Event, MouseEvent, MouseButton};
#[test]
fn test_keys() {
let mut i = b"\x1Bayo\x7F\x1B[D".keys();
assert_eq!(i.next().unwrap().unwrap(), Key::Alt('a'));
assert_eq!(i.next().unwrap().unwrap(), Key::Char('y'));
assert_eq!(i.next().unwrap().unwrap(), Key::Char('o'));
assert_eq!(i.next().unwrap().unwrap(), Key::Backspace);
assert_eq!(i.next().unwrap().unwrap(), Key::Left);
assert!(i.next().is_none());
}
#[test]
fn test_events() {
let mut i =
b"\x1B[\x00bc\x7F\x1B[D\
\x1B[M\x00\x22\x24\x1B[<0;2;4;M\x1B[32;2;4M\x1B[<0;2;4;m\x1B[35;2;4Mb"
.events();
assert_eq!(i.next().unwrap().unwrap(),
Event::Unsupported(vec![0x1B, b'[', 0x00]));
assert_eq!(i.next().unwrap().unwrap(), Event::Key(Key::Char('b')));
assert_eq!(i.next().unwrap().unwrap(), Event::Key(Key::Char('c')));
assert_eq!(i.next().unwrap().unwrap(), Event::Key(Key::Backspace));
assert_eq!(i.next().unwrap().unwrap(), Event::Key(Key::Left));
assert_eq!(i.next().unwrap().unwrap(),
Event::Mouse(MouseEvent::Press(MouseButton::WheelUp, 2, 4)));
assert_eq!(i.next().unwrap().unwrap(),
Event::Mouse(MouseEvent::Press(MouseButton::Left, 2, 4)));
assert_eq!(i.next().unwrap().unwrap(),
Event::Mouse(MouseEvent::Press(MouseButton::Left, 2, 4)));
assert_eq!(i.next().unwrap().unwrap(),
Event::Mouse(MouseEvent::Release(2, 4)));
assert_eq!(i.next().unwrap().unwrap(),
Event::Mouse(MouseEvent::Release(2, 4)));
assert_eq!(i.next().unwrap().unwrap(), Event::Key(Key::Char('b')));
assert!(i.next().is_none());
}
#[test]
fn test_events_and_raw() {
let input = b"\x1B[\x00bc\x7F\x1B[D\
\x1B[M\x00\x22\x24\x1B[<0;2;4;M\x1B[32;2;4M\x1B[<0;2;4;m\x1B[35;2;4Mb";
let mut output = Vec::<u8>::new();
{
let mut i = input.events_and_raw().map(|res| res.unwrap())
.inspect(|&(_, ref raw)| { output.extend(raw); }).map(|(event, _)| event);
assert_eq!(i.next().unwrap(),
Event::Unsupported(vec![0x1B, b'[', 0x00]));
assert_eq!(i.next().unwrap(), Event::Key(Key::Char('b')));
assert_eq!(i.next().unwrap(), Event::Key(Key::Char('c')));
assert_eq!(i.next().unwrap(), Event::Key(Key::Backspace));
assert_eq!(i.next().unwrap(), Event::Key(Key::Left));
assert_eq!(i.next().unwrap(),
Event::Mouse(MouseEvent::Press(MouseButton::WheelUp, 2, 4)));
assert_eq!(i.next().unwrap(),
Event::Mouse(MouseEvent::Press(MouseButton::Left, 2, 4)));
assert_eq!(i.next().unwrap(),
Event::Mouse(MouseEvent::Press(MouseButton::Left, 2, 4)));
assert_eq!(i.next().unwrap(),
Event::Mouse(MouseEvent::Release(2, 4)));
assert_eq!(i.next().unwrap(),
Event::Mouse(MouseEvent::Release(2, 4)));
assert_eq!(i.next().unwrap(), Event::Key(Key::Char('b')));
assert!(i.next().is_none());
}
assert_eq!(input.iter().map(|b| *b).collect::<Vec<u8>>(), output)
}
#[test]
fn test_function_keys() {
let mut st = b"\x1BOP\x1BOQ\x1BOR\x1BOS".keys();
for i in 1..5 {
assert_eq!(st.next().unwrap().unwrap(), Key::F(i));
}
let mut st = b"\x1B[11~\x1B[12~\x1B[13~\x1B[14~\x1B[15~\
\x1B[17~\x1B[18~\x1B[19~\x1B[20~\x1B[21~\x1B[23~\x1B[24~"
.keys();
for i in 1..13 {
assert_eq!(st.next().unwrap().unwrap(), Key::F(i));
}
}
#[test]
fn test_special_keys() {
let mut st = b"\x1B[2~\x1B[H\x1B[7~\x1B[5~\x1B[3~\x1B[F\x1B[8~\x1B[6~".keys();
assert_eq!(st.next().unwrap().unwrap(), Key::Insert);
assert_eq!(st.next().unwrap().unwrap(), Key::Home);
assert_eq!(st.next().unwrap().unwrap(), Key::Home);
assert_eq!(st.next().unwrap().unwrap(), Key::PageUp);
assert_eq!(st.next().unwrap().unwrap(), Key::Delete);
assert_eq!(st.next().unwrap().unwrap(), Key::End);
assert_eq!(st.next().unwrap().unwrap(), Key::End);
assert_eq!(st.next().unwrap().unwrap(), Key::PageDown);
assert!(st.next().is_none());
}
#[test]
fn test_esc_key() {
let mut st = b"\x1B".keys();
assert_eq!(st.next().unwrap().unwrap(), Key::Esc);
assert!(st.next().is_none());
}
fn line_match(a: &str, b: Option<&str>) {
let mut sink = io::sink();
let line = a.as_bytes().read_line().unwrap();
let pass = a.as_bytes().read_passwd(&mut sink).unwrap();
// godammit rustc
assert_eq!(line, pass);
if let Some(l) = line {
assert_eq!(Some(l.as_str()), b);
} else {
assert!(b.is_none());
}
}
#[test]
fn test_read() {
let test1 = "this is the first test";
let test2 = "this is the second test";
line_match(test1, Some(test1));
line_match(test2, Some(test2));
}
#[test]
fn test_backspace() {
line_match("this is the\x7f first\x7f\x7f test",
Some("this is th fir test"));
line_match("this is the seco\x7fnd test\x7f",
Some("this is the secnd tes"));
}
#[test]
fn test_end() {
line_match("abc\nhttps://www.youtube.com/watch?v=dQw4w9WgXcQ",
Some("abc"));
line_match("hello\rhttps://www.youtube.com/watch?v=yPYZpwSpKmA",
Some("hello"));
}
#[test]
fn test_abort() {
line_match("abc\x03https://www.youtube.com/watch?v=dQw4w9WgXcQ", None);
line_match("hello\x04https://www.youtube.com/watch?v=yPYZpwSpKmA", None);
}
}